• Open Daily: 10am - 10pm
    Alley-side Pickup: 10am - 7pm

    3038 Hennepin Ave Minneapolis, MN
    612-822-4611

Open Daily: 10am - 10pm | Alley-side Pickup: 10am - 7pm
3038 Hennepin Ave Minneapolis, MN
612-822-4611
Variational Analysis of Regular Mappings: Theory and Applications

Variational Analysis of Regular Mappings: Theory and Applications

Hardcover

Series: Springer Monographs in Mathematics

CalculusGeneral Mathematics

ISBN10: 3319642766
ISBN13: 9783319642765
Publisher: Springer Nature
Published: Nov 9 2017
Pages: 495
Weight: 1.98
Height: 1.13 Width: 6.14 Depth: 9.21
Language: English

This monograph offers the first systematic account of (metric) regularity theory in variational analysis. It presents new developments alongside classical results and demonstrates the power of the theory through applications to various problems in analysis and optimization theory.

The origins of metric regularity theory can be traced back to a series of fundamental ideas and results of nonlinear functional analysis and global analysis centered around problems of existence and stability of solutions of nonlinear equations. In variational analysis, regularity theory goes far beyond the classical setting and is also concerned with non-differentiable and multi-valued operators. The present volume explores all basic aspects of the theory, from the most general problems for mappings between metric spaces to those connected with fairly concrete and important classes of operators acting in Banach and finite dimensional spaces. Written by a leading expert in the field, the book covers new and powerful techniques, which have proven to be highly efficient even in classical settings, and outlines the theory's predominantly quantitative character, leading to a variety of new and unexpected applications.

Also in

Calculus