• Open Daily: 10am - 10pm
    Alley-side Pickup: 10am - 7pm

    3038 Hennepin Ave Minneapolis, MN
    612-822-4611

Open Daily: 10am - 10pm | Alley-side Pickup: 10am - 7pm
3038 Hennepin Ave Minneapolis, MN
612-822-4611
Optimal Unbiased Estimation of Variance Components

Optimal Unbiased Estimation of Variance Components

Paperback

Series: Lecture Notes in Statistics, Book 39

General MathematicsProbability & Statistics

ISBN10: 0387964495
ISBN13: 9780387964492
Publisher: Springer Nature
Published: Dec 1 1986
Pages: 146
Weight: 0.58
Height: 0.34 Width: 6.69 Depth: 9.61
Language: English
The clearest way into the Universe is through a forest wilderness. John MuIr As recently as 1970 the problem of obtaining optimal estimates for variance components in a mixed linear model with unbalanced data was considered a miasma of competing, generally weakly motivated estimators, with few firm gUidelines and many simple, compelling but Unanswered questions. Then in 1971 two significant beachheads were secured: the results of Rao [1971a, 1971b] and his MINQUE estimators, and related to these but not originally derived from them, the results of Seely [1971] obtained as part of his introduction of the no ion of quad- ratic subspace into the literature of variance component estimation. These two approaches were ultimately shown to be intimately related by Pukelsheim [1976], who used a linear model for the com- ponents given by Mitra [1970], and in so doing, provided a mathemati- cal framework for estimation which permitted the immediate applica- tion of many of the familiar Gauss-Markov results, methods which had earlier been so successful in the estimation of the parameters in a linear model with only fixed effects. Moreover, this usually enor- mous linear model for the components can be displayed as the starting point for many of the popular variance component estimation tech- niques, thereby unifying the subject in addition to generating answers.

Also in

Probability & Statistics