• Open Daily: 10am - 10pm
    Alley-side Pickup: 10am - 7pm

    3038 Hennepin Ave Minneapolis, MN
    612-822-4611

Open Daily: 10am - 10pm | Alley-side Pickup: 10am - 7pm
3038 Hennepin Ave Minneapolis, MN
612-822-4611
Modular Forms

Modular Forms

Paperback

Series: Springer Monographs in Mathematics

General MathematicsGeometry

ISBN10: 3662221888
ISBN13: 9783662221884
Publisher: Springer Nature
Published: Aug 19 2019
Pages: 338
Weight: 1.14
Height: 0.79 Width: 6.00 Depth: 9.00
Language: English

For the most part, this book is the translation from Japanese of the earlier book written jointly by Koji Doi and the author who revised it substantially for the English edition. It sets out to provide the reader with the basic knowledge of elliptic modular forms necessary to understand the recent developments in number theory. The first part gives the general theory of modular groups, modular forms and Hecke operators, with emphasis on the Hecke-Weil theory of the relation between modular forms and Dirichlet series. The second part is on the unit groups of quaternion algebras, which are seldom dealt with in books. The so-called Eichler-Selberg trace formula of Hecke operators follows next and the explicit computable formula is given. In the last chapter, written for the English edition, Eisenstein series with parameter are discussed following the recent work of Shimura: Eisenstein series are likely to play a very important role in the future progress of number theory, and thischapter provides a good introduction to the topic.

Also in

General Mathematics