• Open Daily: 10am - 10pm
    Alley-side Pickup: 10am - 7pm

    3038 Hennepin Ave Minneapolis, MN
    612-822-4611

Open Daily: 10am - 10pm | Alley-side Pickup: 10am - 7pm
3038 Hennepin Ave Minneapolis, MN
612-822-4611
Asymptotic Theory of Nonlinear Regression

Asymptotic Theory of Nonlinear Regression

Paperback

Series: Mathematics and Its Applications, Book 389

General MathematicsGeneral ScienceProbability & Statistics

ISBN10: 9048147751
ISBN13: 9789048147755
Publisher: Springer Nature
Published: Dec 6 2010
Pages: 330
Weight: 1.05
Height: 0.71 Width: 6.14 Depth: 9.21
Language: English
Let us assume that an observation Xi is a random variable (r.v.) with values in 1 1 (1R1, 8 ) and distribution Pi (1R1 is the real line, and 8 is the cr-algebra of its Borel subsets). Let us also assume that the unknown distribution Pi belongs to a 1 certain parametric family {Pi(), () E e}. We call the triple i = {1R1, 8, Pi(), () E e} a statistical experiment generated by the observation Xi. n We shall say that a statistical experiment n = {lRn, 8, P;, () E e} is the product of the statistical experiments i, i = 1, ..., n if PO' = P () X ... X P () (IRn 1 n n is the n-dimensional Euclidean space, and 8 is the cr-algebra of its Borel subsets). In this manner the experiment n is generated by n independent observations X = (X1, ..., Xn). In this book we study the statistical experiments n generated by observations of the form j = 1, ..., n. (0.1) Xj = g(j, (}) + cj, c c In (0.1) g(j, (}) is a non-random function defined on e, where e is the closure in IRq of the open set e IRq, and C j are independent r. v .-s with common distribution function (dJ.) P not depending on ().

Also in

Probability & Statistics