• Open Daily: 10am - 10pm
    Alley-side Pickup: 10am - 7pm

    3038 Hennepin Ave Minneapolis, MN
    612-822-4611

Open Daily: 10am - 10pm | Alley-side Pickup: 10am - 7pm
3038 Hennepin Ave Minneapolis, MN
612-822-4611
Topics in Interpolation Theory of Rational Matrix-Valued Functions

Topics in Interpolation Theory of Rational Matrix-Valued Functions

Paperback

Series: Operator Theory: Advances and Applications, Book 33

Gifts & Stationery GeneralGeneral ReferenceGeneral Science

ISBN10: 3034854714
ISBN13: 9783034854719
Publisher: Birkhauser
Published: Aug 23 2014
Pages: 247
Weight: 0.92
Height: 0.55 Width: 6.69 Depth: 9.61
Language: English
One of the basic interpolation problems from our point of view is the problem of building a scalar rational function if its poles and zeros with their multiplicities are given. If one assurnes that the function does not have a pole or a zero at infinity, the formula which solves this problem is (1) where Zl, Z/ are the given zeros with given multiplicates nl, n / and Wb W are the given p poles with given multiplicities ml, . . ., m, and a is an arbitrary nonzero number. p An obvious necessary and sufficient condition for solvability of this simplest Interpolation pr- lern is that Zj: f: wk(1 j 1, 1 k p) and nl +. . . +n/ = ml +. . . +m ' p The second problem of interpolation in which we are interested is to build a rational matrix function via its zeros which on the imaginary line has modulus 1. In the case the function is scalar, the formula which solves this problem is a Blaschke product, namely z z. )mi n u(z) = all = l (2) J ( Z+ Zj where [o] = 1, and the zj's are the given zeros with given multiplicities mj. Here the necessary and sufficient condition for existence of such u(z) is that zp: f: - Zq for 1 ]1, q n.

Also in

General Science