• Open Daily: 10am - 10pm
    Alley-side Pickup: 10am - 7pm

    3038 Hennepin Ave Minneapolis, MN
    612-822-4611

Open Daily: 10am - 10pm | Alley-side Pickup: 10am - 7pm
3038 Hennepin Ave Minneapolis, MN
612-822-4611
Stable Polynomial

Stable Polynomial

Paperback

General Mathematics

Currently unavailable to order

ISBN10: 6131240205
ISBN13: 9786131240201
Publisher: Vdm Verlag Dr Mller Ag & Co Kg
Pages: 108
Weight: 0.37
Height: 0.26 Width: 9.02 Depth: 6.00
Language: English
High Quality Content by WIKIPEDIA articles! The first condition defines Hurwitz (or continuous-time) stability and the second one Schur (or discrete-time) stability. Stable polynomials arise in various mathematical fields, for example in control theory and differential equations. Indeed, a linear, time-invariant system (see LTI system theory) is said to be BIBO stable if and only if bounded inputs produce bounded outputs; this is equivalent to requiring that the denominator of its transfer function (which can be proven to be rational) is stable. The denominator is required to be Hurwitz stable if the system is in continuous-time and Schur stable if it is in discrete-time. Stable polynomials are sometimes called Hurwitz polynomials and Schur polynomials.

Also in

General Mathematics