• Open Daily: 10am - 10pm
    Alley-side Pickup: 10am - 7pm

    3038 Hennepin Ave Minneapolis, MN
    612-822-4611

Open Daily: 10am - 10pm | Alley-side Pickup: 10am - 7pm
3038 Hennepin Ave Minneapolis, MN
612-822-4611
The Implicit and Explicit Alpha-Mu Schemes

The Implicit and Explicit Alpha-Mu Schemes

Paperback

Astronomy & Space

Currently unavailable to order

ISBN10: 1730725791
ISBN13: 9781730725791
Publisher: Independently Published
Published: Nov 2 2018
Pages: 60
Weight: 0.36
Height: 0.12 Width: 8.50 Depth: 11.02
Language: English
Artificial numerical dissipation is an important issue in large Reynolds number computations. In such computations, the artificial dissipation inherent in traditional numerical schemes can overwhelm the physical dissipation and yield inaccurate results on meshes of practical size. In the present work, the space-time conservation element and solution element method is used to construct new and accurate numerical schemes such that artificial numerical dissipation will not overwhelm physical dissipation. Specifically, these schemes have the property that numerical dissipation vanishes when the physical viscosity goes to zero. These new schemes therefore accurately model the physical dissipation even when it is extremely small. The method of space-time conservation element and solution element, currently under development, is a nontraditional numerical method for solving conservation laws. The method is developed on the basis of local and global flux conservation in a space-time domain, in which space and time are treated in a unified manner. Explicit solvers for model and fluid dynamic conservation laws have previously been investigated. In this paper, we introduce a new concept in the design of implicit schemes, and use it to construct two highly accurate solvers for a convection-diffusion equation. The two schemes become identical in the pure convection case, and in the pure diffusion case. The implicit schemes are applicable over the whole Reynolds number range, from purely diffusive equations to purely inviscid (convective) equations. The stability and consistency of the schemes are analyzed, and some numerical results are presented. It is shown that, in the inviscid case, the new schemes become explicit and their amplification factors are identical to those of the Leapfrog scheme. On the other hand, in the pure diffusion case, their principal amplification factor becomes the amplification factor of the Crank-Nicolson scheme. We also construct an explicit solver wi...

Also in

Astronomy & Space