Euclidean Geometry
Proof!: How the World Became Geometrical
Proof!
How the World Became Geometrical
Hardcover      ISBN: 0374254907

An eye-opening narrative of how geometric principles fundamentally shaped our world

On a cloudy day in 1413, a balding young man stood at the entrance to the Cathedral of Florence, facing the ancient Baptistery across the piazza. As puzzled passers-by looked on, he raised a small painting to his face, then held a mirror in front of the painting. Few at the time understood what he was up to; even he barely had an inkling of what was at stake. But on that day, the master craftsman and engineer Filippo Brunelleschi would prove that the world and everything within it was governed by the ancient science of geometry.

In Proof , the award-winning historian Amir Alexander traces the path of the geometrical vision of the world as it coursed its way from the Renaissance to the present, shaping our societies, our politics, and our ideals. Geometry came to stand for a fixed and unchallengeable universal order, and kings, empire-builders, and even republican revolutionaries would rush to cast their rule as the apex of the geometrical universe. For who could doubt the right of a ruler or the legitimacy of a government that drew its power from the immutable principles of Euclidean geometry?

From the elegant terraces of Versailles to the broad avenues of Washington, DC and on to the boulevards of New Delhi and Manila, the geometrical vision was carved into the landscape of modernity. Euclid, Alexander shows, made the world as we know it possible.

Curved Spaces: From Classical Geometries to Elementary Differential Geometry
Curved Spaces
From Classical Geometries to Elementary Differential Geometry
1st Edition    Paperback      ISBN: 0521713900

This self-contained 2007 textbook presents an exposition of the well-known classical two-dimensional geometries, such as Euclidean, spherical, hyperbolic, and the locally Euclidean torus, and introduces the basic concepts of Euler numbers for topological triangulations, and Riemannian metrics. The careful discussion of these classical examples provides students with an introduction to the more general theory of curved spaces developed later in the book, as represented by embedded surfaces in Euclidean 3-space, and their generalization to abstract surfaces equipped with Riemannian metrics. Themes running throughout include those of geodesic curves, polygonal approximations to triangulations, Gaussian curvature, and the link to topology provided by the Gauss-Bonnet theorem. Numerous diagrams help bring the key points to life and helpful examples and exercises are included to aid understanding. Throughout the emphasis is placed on explicit proofs, making this text ideal for any student with a basic background in analysis and algebra.

Curved Spaces: From Classical Geometries to Elementary Differential Geometry
Curved Spaces
From Classical Geometries to Elementary Differential Geometry
1st Edition    Hardcover      ISBN: 0521886295

This self-contained 2007 textbook presents an exposition of the well-known classical two-dimensional geometries, such as Euclidean, spherical, hyperbolic, and the locally Euclidean torus, and introduces the basic concepts of Euler numbers for topological triangulations, and Riemannian metrics. The careful discussion of these classical examples provides students with an introduction to the more general theory of curved spaces developed later in the book, as represented by embedded surfaces in Euclidean 3-space, and their generalization to abstract surfaces equipped with Riemannian metrics. Themes running throughout include those of geodesic curves, polygonal approximations to triangulations, Gaussian curvature, and the link to topology provided by the Gauss-Bonnet theorem. Numerous diagrams help bring the key points to life and helpful examples and exercises are included to aid understanding. Throughout the emphasis is placed on explicit proofs, making this text ideal for any student with a basic background in analysis and algebra.

Curves and Fractal Dimension
Curves and Fractal Dimension
Hardcover      ISBN: 0387940952

A mathematician, a real one, one for whom mathematical objects are abstract and exist only in his mind or in some remote Platonic universe, never "sees" a curve. A curve is infinitely narrow and invisible. Yet, we all have "seen" straight lines, circles, parabolas, etc. when many years ago (for some of us) we were taught elementary geometry at school. E. Mach wanted to suppress from physics everything that could not be perceived: physics and metaphysics must not exist together. Many a scientist was deeply influenced by his philosophy. In his book Claude Tricot tells us that a curve has a non-vanishing width. Its width is that of the pencil or of the pen on the paper, or of the chalk on the blackboard. The abstract curve which cannot be seen and which does not really concern us here is the intersection of all those thick curves that contain it. For Claude Tricot it is only the thick curves that are pertinent. He describes in detail the way bumps, peaks, and irregularities appear on the curve as its width decreases. This is not a new point of view. Indeed Hausdorff and Bouligand initiated the idea at the beginning of this century. However, Claude Tricot manages to refine the theory extensively and interestingly. His approach is both realistic and mathematically rigorous. Mathematicians who only feed on abstractions as well as engineers who tackle tangible problems will enjoy reading this book.

Curves and Fractal Dimension
Curves and Fractal Dimension
Paperback      ISBN: 1461286840

A mathematician, a real one, one for whom mathematical objects are abstract and exist only in his mind or in some remote Platonic universe, never "sees" a curve. A curve is infinitely narrow and invisible. Yet, we all have "seen" straight lines, circles, parabolas, etc. when many years ago (for some of us) we were taught elementary geometry at school. E. Mach wanted to suppress from physics everything that could not be perceived: physics and metaphysics must not exist together. Many a scientist was deeply influenced by his philosophy. In his book Claude Tricot tells us that a curve has a non-vanishing width. Its width is that of the pencil or of the pen on the paper, or of the chalk on the blackboard. The abstract curve which cannot be seen and which does not really concern us here is the intersection of all those thick curves that contain it. For Claude Tricot it is only the thick curves that are pertinent. He describes in detail the way bumps, peaks, and irregularities appear on the curve as its width decreases. This is not a new point of view. Indeed Hausdorff and Bouligand initiated the idea at the beginning of this century. However, Claude Tricot manages to refine the theory extensively and interestingly. His approach is both realistic and mathematically rigorous. Mathematicians who only feed on abstractions as well as engineers who tackle tangible problems will enjoy reading this book.

Foundations of Convex Geometry
Foundations of Convex Geometry
Paperback      ISBN: 0521639700

This book presents the foundations of Euclidean geometry from the point of view of mathematics, taking advantage of all the developments since the appearance of Hilbert's classic work. Here, real affine space is characterized by a small number of axioms involving points and line segments making the treatment self-contained and thorough. This treatment is accessible for final year undergraduates and graduate students, and can also serve as an introduction to other areas of mathematics such as matroids and antimatroids, combinatorial convexity, the theory of polytopes, projective geometry and functional analysis.

Geometry: Plane and Fancy
Geometry
Plane and Fancy
Hardcover      ISBN: 0387983066

GEOMETRY: Plane and Fancy offers students a fascinating tour through parts of geometry they are unlikely to see in the rest of their studies while, at the same time, anchoring their excursions to the well known parallel postulate of Euclid. The author shows how alternatives to Euclid's fifth postulate lead to interesting and different patterns and symmetries. In the process of examining geometric objects, the author incorporates the algebra of complex (and hypercomplex) numbers, some graph theory, and some topology. Nevertheless, the book has only mild prerequisites. Readers are assumed to have had a course in Euclidean geometry (including some analytic geometry and some algebra) at the high school level. While many concepts introduced are advanced, the mathematical techniques are not. Singer's lively exposition and off-beat approach will greatly appeal both to students and mathematicians. Interesting problems are nicely scattered throughout the text. The contents of the book can be covered in a one-semester course, perhaps as a sequel to a Euclidean geometry course.

Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability
Geometry of Sets and Measures in Euclidean Spaces
Fractals and Rectifiability
Paperback      ISBN: 0521655951

The focus of this book is geometric properties of general sets and measures in Euclidean spaces. Applications of this theory include fractal-type objects, such as strange attractors for dynamical systems, and those fractals used as models in the sciences. The author provides a firm and unified foundation for the subject and develops all the main tools used in its study, such as covering theorems, Hausdorff measures and their relations to Riesz capacities and Fourier transforms. The last third of the book is devoted to the Besicovitch-Federer theory of rectifiable sets, which form in a sense the largest class of subsets of Euclidean space possessing many of the properties of smooth surfaces.

The Non-Euclidean Revolution
The Non-Euclidean Revolution
Paperback      ISBN: 0817647821

Richard Trudeau confronts the fundamental question of truth and its representation through mathematical models in The Non-Euclidean Revolution. First, the author analyzes geometry in its historical and philosophical setting; second, he examines a revolution every bit as significant as the Copernican revolution in astronomy and the Darwinian revolution in biology; third, on the most speculative level, he questions the possibility of absolute knowledge of the world. A portion of the book won the P lya Prize, a distinguished award from the Mathematical Association of America.

Probability Theory of Classical Euclidean Optimization Problems
Probability Theory of Classical Euclidean Optimization Problems
Paperback      ISBN: 3540636668

This monograph describes the stochastic behavior of the solutions to the classic problems of Euclidean combinatorial optimization, computational geometry, and operations research. Using two-sided additivity and isoperimetry, it formulates general methods describing the total edge length of random graphs in Euclidean space. The approach furnishes strong laws of large numbers, large deviations, and rates of convergence for solutions to the random versions of various classic optimization problems, including the traveling salesman, minimal spanning tree, minimal matching, minimal triangulation, two-factor, and k-median problems. Essentially self-contained, this monograph may be read by probabilists, combinatorialists, graph theorists, and theoretical computer scientists.